Grower’s IPM Guide for Florida Tomato and Pepper Production

This comprehensive, interdisciplinary resource guides the user through the process of planning a crop with up front decisions about pest and disease prevention and management. It presents optional production methods and IPM tactics that can reduce the risks of insect outbreaks, disease epidemics, resistance to pesticides and associated costs. The overall purpose of the guide is to increase the profitability of growing tomatoes and peppers while protecting human health and the environment.

Edited by

Dr. Jennifer L. Gillett
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Heidi N. HansPetersen
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Dr. Norman C. Leppla
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Denise D. Thomas
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Published 2006
Acknowledgements

The project to produce a Grower’s IPM Guide for Florida Tomato and Pepper Production succeeded due to the partnership that was created to assemble a complete set of IPM resources for planning pest management at the beginning of each crop. This partnership included county extension faculty, extension specialists, crop consultants, tomato and pepper growers, and other pest management experts. Norm Leppla and Barbra Larson prepared the grant proposal that was funded by the USDA, CSREES, Pest Management Alternatives Program (grant # 2003-34381-13593), Monte Johnson, Program Director, PMAP. Charles Mellinger, Glades Crop Care, Inc. was a formal cooperator because of his expertise in managing pests of tomato and pepper. The Florida Fruit and Vegetable Association advocated the project and encouraged its completion. Barbra Larson led the initial phase of the project before becoming Coordinator, UF, IFAS Florida Yards and Neighborhoods. We thank especially the section editors, authors of individual topics, and those who reviewed the entire guide: Dan Botts and Mike Aerts, Florida Fruit and Vegetable Association; Charles Mellinger and Steve Hoak, Glades Crop Care, Inc.; Kevin Seitzinger, Gargiulo Farms; Wes Roan, Six L’s; and Steve Olson and Gene McAvoy, UF, IFAS. Jane Medley designed the cover, Joyce Merritt helped with final production and organization of the appendix material, and Esther Dunn conducted grower interviews. During the more than 3-year effort to produce this guide, assistance was provided by Rebecca Baldwin, Angela Vincent and several other staff members and students. The UF, IFAS statewide IPM program is funded by USDA, CSREES, IPM, Mike Fitzner, Director, Plant and Animal Systems, and administered by Larry Arrington, Dean for Extension and Director, Florida Cooperative Extension Service and Joan Dusky, Associate Dean. John Capinera, Chairman, UF, IFAS, Entomology and Nematology Department provided considerable encouragement and guidance.
Editors, Reviewers and Authors

Editors

Jennifer L. Gillett, IFAS, Entomology and Nematology, Gainesville, FL
Heidi N. HansPetersen, IFAS, Entomology and Nematology, Gainesville, FL
Norman C. Leplla, IFAS, Entomology and Nematology, Gainesville, FL
Denise D. Thomas, IFAS, Plant Medicine, Gainesville, FL

Chapter Editors

Fred M. Fishel, IFAS, Agronomy, Gainesville, FL
Jennifer L. Gillett, IFAS, Entomology and Nematology, Gainesville, FL
Phyllis R. Gilreath, Manatee County Extension, Palmetto, FL
Heidi N. HansPetersen, IFAS, Entomology and Nematology, Gainesville, FL
Gene McAvoy, Hendry County Extension, LaBelle, FL
Ken L. Pernezny, IFAS-EREC, Belle Glade, FL
David J. Schuster, IFAS-GCREC, Wimauma, FL
Eric H. Simonne, IFAS, Horticultural Science, Gainesville, FL
William M. Stall, IFAS, Horticultural Sciences, Gainesville, FL

Reviewers

Mike Aerts, Florida Fruit and Vegetable Association, Maitland, FL
Dan Botts, Florida Fruit and Vegetable Association, Maitland, FL
Steve Hoak, Glades Crop Care, Inc, Quincy, FL
Gene McAvoy, Hendry County Extension, LaBelle, FL
Charles Mellinger, Glades Crop Care, Inc, Jupiter, FL
Stephen M. Olson, IFAS, Horticultural Sciences, Quincy, FL
Wes Roan, Six L’s, Naples, FL
Kevin Seitzinger, Gargiulo Farms, Naples, FL
Editors, Reviewers and Authors, cont.

Authors

Jerry A. Bartz, IFAS, Plant Pathology, Gainesville, FL
Carlene A. Chase, IFAS, Horticultural Science, Gainesville, FL
Kent E. Cushman, IFAS-SWFREC, Immokalee, FL (Deceased)
Jason A. Ferrell, IFAS, Weed Science, Gainesville, FL
Fred M. Fishel, IFAS, Agronomy, Gainesville, FL
J. Howard Frank, IFAS, Entomology and Nematology, Gainesville, FL
Ronald D. French-Monar, IFAS-SWFREC, Immokalee, FL
Joseph E. Funderburk, IFAS-NFREC, Quincy, FL
Jennifer L. Gillett, IFAS, Entomology and Nematology, Gainesville, FL
Phyllis R. Gilreath, Manatee County Extension, Palmetto, FL
Tyler Harp, IFAS, Plant Pathology, Gainesville, FL
Amanda C. Hodges, IFAS, Entomology and Nematology, Gainesville, FL
Pingsheng Ji, IFAS-NFREC, Quincy, FL
Jeff Jones, IFAS, Plant Pathology, Gainesville, FL
Norman C. Leplla, IFAS, Entomology and Nematology, Gainesville, FL
Michael Mahovic, IFAS, Plant Pathology, Gainesville, FL
Gene McAvoy, Hendry County Extension, LaBelle, FL
Robert J. McGovern, IFAS, Plant Pathology, Gainesville, FL
Cindy McKenzie, USDA-ARS, Ft. Pierce, FL
Timur M. Momol, IFAS-NFREC, Quincy, FL
Mark Mossler, IFAS, Agronomy, Gainesville, FL
Joseph W. Noling, IFAS-CREC, Lake Alfred, FL
Stephen M. Olson, IFAS, Horticultural Sciences, Quincy, FL
Monica Ozores-Hampton, IFAS-SWREC, Immokalee, FL
Ken L. Pernezny, IFAS-EREC, Belle Glade, FL
Jane E. Polston, IFAS, Plant Pathology, Gainesville, FL
Pamela D. Roberts, IFAS-SWFREC, Immokalee, FL
David J. Schuster, IFAS-GCREC, Wimauma, FL
Eric H. Simonne, IFAS, Horticultural Science, Gainesville, FL
Phillip Stansly, IFAS-SWREC, Immokalee, FL
William M. Stall, IFAS, Horticultural Sciences, Gainesville, FL
Charles J. Stuhl, USDA-ARS-CMAVE, Gainesville, FL
Grower’s IPM Guide for Florida Tomato & Pepper Production

Contents

- Acknowledgements ii
- Table of Contents iii

chapter one~ Introduction

- IPM Principles 1
- IPM Past, Present & Future 2
- Developing an IPM Plan 3
- Project Objectives 4

chapter two~ Tomato & Pepper Production

Unique Challenges to Growing Vegetables in Florida

- Weather Events 5
- Poor Soils 6
- Pest and Disease Pressure 6
- Labor 7
- Development and Urban Sprawl 7
- Regulatory Issues 7

Cultivar Selection 8

- Tomato Cultivars for Florida 10
- Round Tomatoes 10
- Roma Tomatoes 11
- Cherry Tomatoes 11
- Grape Tomatoes 12

- Pepper Cultivars for Florida 13

Resistant Cultivars 14

- Don’t Rely on Resistance Alone 14

Types of Resistance 14

chapter three~ Soil & Nutrient Management

- Best Management Practices (BMPs) 15
- Soil Types and Production Systems 17
- Irrigation 18
 - Methods of Irrigation 18
 - Irrigation Schedule 20
 - Improving Efficiency 20
 - Flooding 22
- Fertilization 23
 - Nutrient needs for Tomato & Pepper 23
 - Supplemental Fertilizer Applications 23
 - Micronutrients 23
 - Table of Fertilizer Recommendations - Tomato 24
Contents, cont.

Table of Fertilizer Recommendations - Pepper 25
N Rate Recommendation for Grape Tomato 26
Nutrient Deficiencies 26
Sampling and Diagnostic Tools 27
 What is a “Credible” Research Institution? 27
 How to Choose a Soil Testing Lab 27
 Water Sampling for Drip Irrigation 27
 Petiole Sap Testing 28
 Whole Leaf Analysis 28
 Record Keeping 29
 References 30
Cover Crops 33
 Steps to Success 33
 Benefits of Cover Crops 33
 Selecting a Cover Crop 33
 Cover Crop Selection Checklist 34
 Matching Production System and Cropping Cycle 34
 Avoiding Problems 35
 Description of Different Cover Crops 36
Compost and Manure 37
 Steps to Success Using Compost 37
 Benefits of Compost and Manure 37
 Nutrient Release 39
 How and When to Incorporate 39
 How to Calibrate a Compost Spreader 39
 Avoiding Problems 40
 Sources of Compost and Manure 40

chapter four ~ Pest Management

Monitoring
 Action Thresholds 41
 Pest Outbreaks 41
 Why All Growers Should Scout 42
 How to Scout 42
 Sampling for Pepper 42
 Sampling for Tomato 42

Featured Pests
 Green Peach Aphid 43
 Beet Armyworm 45
 Broad Mite 47
 Tomato & Tobacco Hornworm 49
 Vegetable Leafminer 51
 Cabbage & Soybean Looper 53
 Mole Crickets (Tawny & Short Winged) 55
 Pepper Weevil 57
 Tomato Russet Mite 59
Contents, cont.

Southern Armyworm 61
Two Spotted Spider Mite 63
Stinkbugs & Leaffooted Bugs 65
Florida Flower Thrips 67
Melon Thrips 69
Tobacco Thrips 71
Western Flower Thrips 73
Tomato Fruitworm (Corn Earworm) 75
Tomato Pinworm 77
Yellowstriped Armyworm 79
Sweet potato/ Silverleaf Whitefly 81
Whitefly, Biotypes Q 83
Whiteflies, TYLCV & Insecticide Resistance 84
Southern Plant Diagnostic Network 87
Pest Seasonality Charts 88
North Florida 88
Southwest Florida 88
West Central Florida 89

Chapter 5~ Disease Management

Integrated Control
 Correctly Identify Pathogen 91
 Sanitation 91
 Nutrient and Water Management 92
 Chemical Control 92
Disease Seasonality Charts 93
Featured Diseases
 Anthracnose of Pepper 95
 Bacterial Spot 97
 Bacterial Wilt 99
 Early Blight of Tomato 101
 Fusarium Crown and Root Rot of Tomato 103
 Gray Mold and Ghost Spot 105
 Late Blight 107
 Tomato Little Leaf 109
 Nematode Management 111
 Phytophthora Blight of Pepper 113
 Pythium Damping-off, Root and Stem Rot 115
 Southern Blight 117
 Target Spot 119
 Tomato Spotted Wilt Virus 121
 Tomato Yellow Leaf Curl Virus 123
 Verticillium Wilt 125
 Wet Rot 127
 White Mold 129
Disorders of Pepper
 Blossom End Rot 131
 Sunscald 132
 Misshapen Fruit 133

Disorders of Tomato
 Blossom End Rot 135
 Catfacing 136
 Cracking & Graywall 137
 Internal White Tissue & Irregular Ripening 138
 Pox and Fleck & Puffiness 139
 Rain Check & Sunscald 140
 Thrips Damage & Zebra Stripe & Zippering 141

Postharvest Diseases of Tomato 142
 Bacterial Soft Rot 145
 Sour Rot 147
 Rhizopus Rot (Fungal Nests) 149
 Black Mold and Rots 151
 Buckeye Rot and Late Blight 153
 Gray Mold (Botrytis Fruit Rot) 155

Chapter 6 ~ Weed Management

Weed Management
 When to Manage Weeds 157
 Critical Weed-Free Periods 157

Classification of Weeds 158

Featured Weeds
 Alligator Weed 160
 Palmer Amaranth 160
 Spiny Amaranth 161
 Bermudagrass 161
 Smooth Crabgrass 162
 Large Crabgrass 162
 Dodder 163
 Eclipta 163
 Florida Pusley 164
 Goosegrass 164
 American Black Nightshade 165
 Purple Nutsedge 165
 Yellow Nutsedge 166
 Livid Amaranth 166
 Common Purslane 167
 Common Ragweed 167
 Spreading Dayflower 168
 Smooth Pigweed 168

Non-chemical Controls 169
Chemical Controls / Herbicides 171
Implementing Control 172
chapter 7 ~ Cultural Controls & Physical Controls

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>Featured Controls</td>
<td></td>
</tr>
<tr>
<td>Mulches</td>
<td>174</td>
</tr>
<tr>
<td>Planting Dates & Times</td>
<td>176</td>
</tr>
<tr>
<td>Field Sanitation</td>
<td>178</td>
</tr>
<tr>
<td>Off-Season Management and Cover Crops</td>
<td>180</td>
</tr>
<tr>
<td>Off-Season Management and Double Cropping</td>
<td>182</td>
</tr>
<tr>
<td>Windbreaks</td>
<td>184</td>
</tr>
</tbody>
</table>

chapter 8 ~ Biological Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>Biological Control</td>
<td></td>
</tr>
<tr>
<td>Habitat Management</td>
<td>187</td>
</tr>
<tr>
<td>Three Forms of Biological Control</td>
<td>188</td>
</tr>
<tr>
<td>Attracting Beneficials into Fields</td>
<td>189</td>
</tr>
<tr>
<td>Micro-sized Good Guys</td>
<td>189</td>
</tr>
<tr>
<td>Featured Biological Control</td>
<td></td>
</tr>
<tr>
<td>Bigeyed Bug</td>
<td>191</td>
</tr>
<tr>
<td>Brown & Green Lacewings</td>
<td>192</td>
</tr>
<tr>
<td>Minute Pirate Bug</td>
<td>193</td>
</tr>
<tr>
<td>Predatory Stinkbug & Ladybird beetle</td>
<td>194</td>
</tr>
<tr>
<td>Larra Wasp</td>
<td>195</td>
</tr>
<tr>
<td>Wasp Parasitoid & Predatory Mite</td>
<td>196</td>
</tr>
<tr>
<td>Beneficial Agents Interaction with Pesticides</td>
<td></td>
</tr>
</tbody>
</table>

chapter 9 ~ Chemical Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biorational Insecticides</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>Oil, Soap and Neem</td>
<td>199</td>
</tr>
<tr>
<td>Bt ~ Bacillus thuringiensis</td>
<td>200</td>
</tr>
<tr>
<td>Nicotinoids</td>
<td>201</td>
</tr>
<tr>
<td>Insect Growth Regulators</td>
<td>202</td>
</tr>
<tr>
<td>Pest Resistance</td>
<td></td>
</tr>
<tr>
<td>What is Resistance</td>
<td>203</td>
</tr>
<tr>
<td>Managing Resistance</td>
<td>204</td>
</tr>
<tr>
<td>MOA ~ Mode-of-Action</td>
<td>204</td>
</tr>
<tr>
<td>Worker Protection Standards</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>Establishment Operators</td>
<td>205</td>
</tr>
<tr>
<td>Notification</td>
<td>206</td>
</tr>
<tr>
<td>Warning Signs</td>
<td>208</td>
</tr>
<tr>
<td>Restricted Use Pesticides</td>
<td>209</td>
</tr>
</tbody>
</table>
Appendix 1: Vegetable Pest & Disease Hotline
Appendix 2: How to Sample Insects, Nematodes, Diseases and Soil
Appendix 3: Calibration of Chemical Applicators Used in Vegetables
Appendix 4: Weed-Herbicide Interaction Table
Appendix 5: IRAC- Mode of Action List -Insecticides
Appendix 6: FRAC- Mode of Action List -Fungicides
Appendix 7: HRAC- Mode of Action List -Herbicides
Appendix 8: National Pest Alert -Tospoviruses
Appendix 9: Pesticide CEUs Available at the University of Florida