Grower’s IPM Guide for Florida Tomato and Pepper Production

This comprehensive, interdisciplinary resource guides the user through the process of planning a crop with up front decisions about pest and disease prevention and management. It presents optional production methods and IPM tactics that can reduce the risks of insect outbreaks, disease epidemics, resistance to pesticides and associated costs. The overall purpose of the guide is to increase the profitability of growing tomatoes and peppers while protecting human health and the environment.

Edited by

Dr. Jennifer L. Gillett
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Heidi N. HansPetersen
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Dr. Norman C. Leppla
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Denise D. Thomas
University of Florida
Institute of Food and Agricultural Sciences
Department of Entomology and Nematology
Gainesville, FL 32611

Published 2006
Acknowledgements

The project to produce a Grower’s IPM Guide for Florida Tomato and Pepper Production succeeded due to the partnership that was created to assemble a complete set of IPM resources for planning pest management at the beginning of each crop. This partnership included county extension faculty, extension specialists, crop consultants, tomato and pepper growers, and other pest management experts. Norm Leppla and Barbra Larson prepared the grant proposal that was funded by the USDA, CSREES, Pest Management Alternatives Program (grant # 2003-34381-13593), Monte Johnson, Program Director, PMAP. Charles Mellinger, Glades Crop Care, Inc. was a formal cooperator because of his expertise in managing pests of tomato and pepper. The Florida Fruit and Vegetable Association advocated the project and encouraged its completion. Barbra Larson led the initial phase of the project before becoming Coordinator, UF, IFAS Florida Yards and Neighborhoods. We thank especially the section editors, authors of individual topics, and those who reviewed the entire guide: Dan Botts and Mike Aerts, Florida Fruit and Vegetable Association; Charles Mellinger and Steve Hoak, Glades Crop Care, Inc.; Kevin Seitzinger, Gargiulo Farms; Wes Roan, Six L’s; and Steve Olson and Gene McAvoy, UF, IFAS. Jane Medley designed the cover, Joyce Merritt helped with final production and organization of the appendix material, and Esther Dunn conducted grower interviews. During the more than 3-year effort to produce this guide, assistance was provided by Rebecca Baldwin, Angela Vincent and several other staff members and students. The UF, IFAS statewide IPM program is funded by USDA, CSREES, IPM, Mike Fitzner, Director, Plant and Animal Systems, and administered by Larry Arrington, Dean for Extension and Director, Florida Cooperative Extension Service and Joan Dusky, Associate Dean. John Capinera, Chairman, UF, IFAS, Entomology and Nematology Department provided considerable encouragement and guidance.
Grower's IPM Guide for Florida Tomato & Pepper Production

Contents

Acknowledgements ii
Table of Contents iii

chapter one~ Introduction

IPM Principles 1
IPM Past, Present & Future 2
Developing an IPM Plan 3
Project Objectives 4

chapter two~ Tomato & Pepper Production

Unique Challenges to Growing Vegetables in Florida
- Weather Events 5
- Poor Soils 6
- Pest and Disease Pressure 6
- Labor 7
- Development and Urban Sprawl 7
- Regulatory Issues 7
Cultivar Selection 8
- Tomato Cultivars for Florida 10
- Round Tomatoes 10
- Roma Tomatoes 11
- Cherry Tomatoes 11
- Grape Tomatoes 12
- Pepper Cultivars for Florida 13
Resistant Cultivars 14
Don't Rely on Resistance Alone 14
Types of Resistance 14

chapter three~ Soil & Nutrient Management

Best Management Practices (BMPs) 15
Soil Types and Production Systems 17
Irrigation 18
- Methods of Irrigation 18
- Irrigation Schedule 20
- Improving Efficiency 20
- Flooding 22
Fertilization 23
- Nutrient needs for Tomato & Pepper 23
- Supplemental Fertilizer Applications 23
- Micronutrients 23
Table of Fertilizer Recommendations - Tomato 24
Contents, cont.

Table of Fertilizer Recommendations - Pepper 25
N Rate Recommendation for Grape Tomato 26
Nutrient Deficiencies 26
Sampling and Diagnostic Tools 27
 What is a "Credible" Research Institution? 27
 How to Choose a Soil Testing Lab 27
 Water Sampling for Drip Irrigation 27
 Petiole Sap Testing 28
 Whole Leaf Analysis 28
 Record Keeping 29
 References 30
Cover Crops 33
 Steps to Success 33
 Benefits of Cover Crops 33
 Selecting a Cover Crop 33
 Cover Crop Selection Checklist 34
 Matching Production System and Cropping Cycle 34
 Avoiding Problems 35
 Description of Different Cover Crops 36
Compost and Manure 37
 Steps to Success Using Compost 37
 Benefits of Compost and Manure 37
 Nutrient Release 39
 How and When to Incorporate? 39
 How to Calibrate a Compost Spreader 39
 Avoiding Problems 40
 Sources of Compost and Manure 40

chapter four~ Pest Management

Monitoring 41
 Action Thresholds 41
 Pest Outbreaks 41
 Why All Growers Should Scout 42
 How to Scout 42
 Sampling for Pepper 42
 Sampling for Tomato 42

Featured Pests 43
 Green Peach Aphid 43
 Beet Armyworm 45
 Broad Mite 47
 Tomato & Tobacco Hornworm 49
 Vegetable Leafminer 51
 Cabbage & Soybean Looper 53
 Mole Crickets (Tawny & Short Winged) 55
 Pepper Weevil 57
 Tomato Russet Mite 59
chapter 5~ Disease Management

Integrated Control
- Correctly Identify Pathogen 91
- Sanitation 91
- Nutrient and Water Management 92
- Chemical Control 92

Disease Seasonality Charts 93

Featured Diseases
- Anthracnose of Pepper 95
- Bacterial Spot 97
- Bacterial Wilt 99
- Early Blight of Tomato 101
- Fusarium Crown and Root Rot of Tomato 103
- Gray Mold and Ghost Spot 105
- Late Blight 107
- Tomato Little Leaf 109
- Nematode Management 111
- Phytophthora Blight of Pepper 113
- Pythium Damping-off, Root and Stem Rot 115
- Southern Blight 117
- Target Spot 119
- Tomato Spotted Wilt Virus 121
- Tomato Yellow Leaf Curl Virus 123
- Verticillium Wilt 125
- Wet Rot 127
- White Mold 129
Disorders of Pepper
 Blossom End Rot 131
 Sunscald 132
 Misshapen Fruit 133
Disorders of Tomato
 Blossom End Rot 135
 Catfacing 136
 Cracking & Graywall 137
 Internal White Tissue & Irregular Ripening 138
 Pox and Fleck & Puffiness 139
 Rain Check & Sunscald 140
 Thrips Damage & Zebra Stripe & Zippering 141
Postharvest Diseases of Tomato 142
 Bacterial Soft Rot 145
 Sour Rot 147
 Rhizopus Rot (Fungal Nests) 149
 Black Mold and Rots 151
 Buckeye Rot and Late Blight 153
 Gray Mold (Botrytis Fruit Rot) 155
chapter 6~ Weed Management
Weed Management
 When to Manage Weeds 157
 Critical Weed-Free Periods 157
Classification of Weeds 158
Featured Weeds
 Alligator Weed 160
 Palmer Amaranth 160
 Spiny Amaranth 161
 Bermudagrass 161
 Smooth Crabgrass 162
 Large Crabgrass 162
 Dodder 163
 Eclipta 163
 Florida Pusley 164
 Goosegrass 164
 American Black Nightshade 165
 Purple Nutsedge 165
 Yellow Nutsedge 166
 Livid Amaranth 166
 Common Purslane 167
 Common Ragweed 167
 Spreading Dayflower 168
 Smooth Pigweed 168
Non-chemical Controls 169
Chemical Controls / Herbicides 171
Implementing Control 172
chapter 7~ Cultural Controls & Physical Controls

Introduction 173
Featured Controls
 Mulches 174
 Planting Dates & Times 176
 Field Sanitation 178
 Off-Season Management and Cover Crops 180
 Off-Season Management and Double Cropping 182
 Windbreaks 184

chapter 8~ Biological Control

Introduction
 Biological Control 187
 Habitat Management 187
 Three Forms of Biological Control 188
 Attracting Beneficial's Into Fields 189
 Micro-sized Good Guys 189
Featured Biological Control
 Big-eyed Bug 191
 Brown & Green Lacewings 192
 Minute Pirate Bug 193
 Predatory Stinkbugs & Ladybird beetle 194
 Larra Bicolor 195
 Wasp Parasitoid & Predatory Mite 196
Beneficial Agents Interaction with Pesticides 197

chapter 9~ Chemical Control

Biorational Insecticides
 Introduction 199
 Oil, Soap and Neem 199
 Bt~ Bacillus thuringiensis 200
 Nicotinoids 201
 Insect Growth Regulators 202
Pest Resistance
 What is Resistance 203
 Managing Resistance 204
 MOA~ Mode-of-Action 204
Worker Protection Standards
 Introduction 205
 Establishment Operators 205
 Notification 206
 Warning Signs 208
Restricted Use Pesticides 209
Appendix 1: Vegetable Pest & Disease Hotline
Appendix 2: How to Sample Insects, Nematodes, Diseases and Soil
Appendix 3: Calibration of Chemical Applicators Used in Vegetables
Appendix 4: Weed-Herbicide Interaction Table
Appendix 5: IRAC- Mode of Action List -Insecticides
Appendix 6: FRAC- Mode of Action List -Fungicides
Appendix 7: HRAC- Mode of Action List -Herbicides
Appendix 8: National Pest Alert -Tospoviruses