IPM in Florida Fruiting Vegetables

Phil Stansly UF-IFAS Immokalee

Principal Pests of Pepper in SW Florida

Pepper weevil

Melon thrips

Western flower thrips

Beet Armyworm

Aphids/potyvirus

Broadmite

Secondary Pest Outbreak: Melon Thrips 1994

Effect of 6 weekly sprays over 4 sampling periods

Avoiding Insecticide Backlash

Cultural controls to reduce pest populations

- Host free period in summer
- Shortened crop cycles
- Rapid crop destruction
- Crop rotation
- Weed control
- No over-fertilization

Use selective insecticides

- Avoid carbamates, OPs, endosulfan and especially pyrethroids
- Use nicotinoids as drenches where appropriate
- Use spinosyns only for thrips control.

Pepper Weevil Anthonomus eugenii

- Biology

 Life cycle, host plants, phenology

 Scouting

 Counts, Pheromone traps
- Management
 - -Cultural, Chemical, Biological

Adult Prefers feeding on flower buds

Prefers laying eggs near calyx of young fruit

Egg laid in small cell sculpted by mandibles and covered by a plug

Larvae burrow into fruit, feed on seeds Infested fruit often fall to the ground where adult emerges

Photos by E. Rodriguez

Pepper Weevil Biology

- Egg incubation: 3 to 5 days
- 3 larval instars: 13 to 17 days
- Pupal stage: 3 to 6 days
- Preoviposition: 2 to 3 days
- Fecundity: 340 eggs in 1 month
- Adult longevity: 3 months
- Limited host range
 - -Reproduces on pepper, nightshade

Scouting Pepper Weevil

Adults: Concentrate on

- Field margins
- Upper 1/3 of plant
- Leaf axils and blooms
- Pheromone traps
- **Also Look For:**
- Punctured/fallen fruit or blooms

Cultural Control of Pepper Weevil • At least 3 months fallow

- Control nightshado
- Control nightshade
- Plant in isolated locations
- Avoid sequential planting
 - Rotate crops

- Shorten crop cycles
- Remove and destroy infested fruit
- Plow down and incorporate old crops

Chemical Control of Pepper Weevil

- Only adult subject to insecticidal control
- Cryolyte Na3AIF6 moderate efficacy
 Use early to avoid yield effect
- Foliar neonicotinoids
 - Actara most effective
 - Assail and Venom also active
 - Same mode of action
- Vydate
 - Some resistance seen
 - 3 4 pts
- Capture (bifenthrin), Cobalt (chlorpyrifos and gamma-cyhalothrin), Other pyrethroids
 – Only late season, only if necessary

Biological Control of Pepper Weevil

Catalaccus hunteri
 Most common parasitoid generally
 Attacks 3rd instar, feeds externally
 Flower buds and small fruit only

Triaspis sp
 Most common in Nayarit Mexico
 Attacks egg, feeds internally on larva
 Released but not recovered in Florida

Broad Mite:

Polyphagotarsonemus lattus

- Midseason (dry weather) pest
- Aggregated distribution
- Phoretic on whiteflies/aphids
- Some insecticides may aggravate
- Selective acaracides preferred: Sulfur, abamectin, dicofol

Biological Control of Broadmite with *A. swirskii* : Immokalee Spring 2007

Selective Insecticides for Beet Armyworm Control

- Avaunt
- Intrepid
- Proclaim

CoragenSynapse

- Bt
- Rimon

Conclusions/Recommendations: Pepper

- Avoid broad spectrum insecticide or use only late in the crop cycle
- Use selective insecticides for lep control
 - Save spinosyns for thrips
- Cultural practices to control pepper weevil
 - ✓ At least 3 months fallow
 - ✓ Control nightshade
 - ✓ Plant in isolated locations
 - Avoid sequential planting
 - Rotate crops
 - ✓ Shorten crop cycles
 - ✓ Remove and destroy infested fruit
 - ✓ Plow down and incorporate old crops

Principal Tomato Pests in South Florida

Whitefly *Bemisia tabaci* and TYLCV

Leafminers: *Liriomyza trifolii*

Western Flower thrips and Tomato

- WFT really not a problem if no TSWV
- Orius does not colonize tomato well
- Oviposition dimpling possible with high numbers
- Use spinosyn products only for at least 2 of 4 susceptible pests causing damage

-Worms, Leafminer, Pinworm, Thrips

Challenges to Insecticidal Control of *B. tabaci* on Florida Vegetables

- RS₅₀ values for imidacloprid have increased 8 fold since 2000 and 12 fold since 2005
- RS₅₀ values for thiamethoxam have increased 14 fold since 2003
- Imidacloprid off patent; 2 other nicotinoids registered
- Biotype Q confirmed in nursery/retail outlets in five Florida counties – not in field yet

Relative Susceptibility of *B. tabaci* adults from Nicotinoid-Treated Fields in South Florida

RS₅₀ Values of Selected Whitefly Populations for Selected Insecticides – Spring 2007

		Neonic	otinoids	Pyrethroid	Organochlorine	
Population	Admire	Assail	Platinum	Venom	Bifenthrin	Endosulfan
Apollo Beach	7.3		10.2	4.0	116.4	2.8
FM	5.6		4.8			1.4
Homestead	28.3		21.9		29.8	1.3
NECollier	85.8	1.2	22.9		110.8	1.3
Parrish-1	47.8		6.5	7.0	240.9	1.6
SWFREC	33.2	1.3	21.8	7.1	233.6	1.7
SWHendry	29.6	3.9			114.1	
TomG#2	5.5		10.5	2.8		
No. Pop ^{ns}	14	6	18	10	6	8
Avg RS ₅₀	23.1	2.6	10.3	4.8	140.9	1.6

D. Schuster

Recommended Insecticidal Control Practices

 Rotate to non-neonicotinoids after first 6 weeks or for nymph or adult control

• Use selective vs broad spectrum insecticides

• Do not apply insecticides to weeds on field perimeters to conserve natural enemies

INCV Resistant Varieties

Fruit Yields, Spring 2008

Monica Ozores-Hampton et al., Proc. Tomato Institute 2008

Whitefly Nymphs Tomato Spring 2008_1

Date	28-Feb	17-Mar	25-Mar	31-Mar	7-Apr	10-Apr	14-Apr	5-May
Volume	4 oz/plant	20 gal/acre	4 oz plant	40 gal/acre	40 gal/acre	4 oz/plant	60 gal/acre	90 gal/acre
Treatment								
Control								
				Thionex 3				
Standard	Admire Pro	Fulfill		EC	Thionex 3 EC		Courier 40 SC	Courier 40 SC
	10.5 oz	2.75 oz		21.3 oz	21.3 oz		13.6 oz	13.6 oz
Admire Pro	Admire Pro							
	10.5 oz							
Coragen -L	Admire Pro		Coragen					
	10.5 oz		5.0 oz					
Coragen -M	Admire Pro		Coragen			Coragen		
	10.5 oz		6.7 oz			6.7 oz		
Coragen - H	Admire Pro		Coragen					
	10.5 oz		7.6 oz					
Leverage* 2.7 SC	Admire Pro	Leverage		Leverage	Leverage			
	10.5 oz	5.1 oz		5.1 oz	5.1 oz			
Leverage +	Admire Pro	Leverage		Leverage	Leverage			
	10.5 oz	5.1 oz		5.1 oz	5.1 oz			
Oberon 2 SC		Oberon		Oberon	Oberon			
		8.5 oz		8.5 oz	8.5 oz			
Leverage	Admire Pro	Leverage		Leverage	Leverage		Movento	Movento
Movento 240 SC	10.5 oz	5.1 oz		5.1 oz	5.1 oz		5.0 oz	5.0 oz

* Imidacloprid 17%, Cyfluthrin 12%

Whitefly Nymphs Tomato Spring 2008-1

All Treatments Included AdmirePro

Adult Whiteflies Tomato Spring 2008-1

All Treatments Included AdmirePro

Spidermites 15 May

Insecticidal Control of Whitefly Spring 2008: Phil Stansly, Barry Kostyk, Robert Riefer

	Foliar applications by date and application volume (gal/ac)									
		24-Mar (40)	31-Mar (40)	7-Apr (40)	15-Apr (60)	22-Apr (70)	28-Apr (90)	5-May (90)	13-May (90)	
<u>Standard</u> <u>Protocol:</u> Fulfill Thionex Knack Oberon	50 WG 3EC 11 WG 2 SC	X	X	X	X	X	X	X	X	Venom in Grower Standard. *4 qt rate and one 2 qt rate QRD alone.
QRD416*		X	X	X	X	X	X	X	X	
Flower Power		X	X	X	X	X	X	X	X	Second 2qt rate w/
Como		X	X	X	X	X	X	X	X	AdmirePro standard.

Whitefly Nymphs Tomato Spring 2008_2

Grower Std w/ Venom. QRD & Power Treatments with AdmirePro

Adult Whiteflies Tomato Spring 2008_2

Grower Std w/ Venom. QRD & Power Treatments Included AdmirePro

Conclusions: Whitefly Field Trials Spring 2008

- Imidacloprid drench wore of quickly
 Better control with dinitefuron
- Marginal whitefly control with rynaxypyr
 Induced spidermite infestation as did grower standard with 2 sprays of endosulfan despite 2 sprays of spiromesafen
- Some whitefly control with QRD (Requiem)
 —Chenopodium terpenoid extract
- Increased yield with Flower/Root Power + Como combination.

Watermelon Vine Decline Caused by *Bemisia*-transmitted Squash Vein Yellowing Virus

Phil Stansly and Pam Roberts University of Florida SW Florida Research and Education Center Immokalee FL

Shaker Kousik USDA-ARS Charleston

Symptoms of watermelon vine decline in south Florida

- Symptoms observed approaching harvest
- Patchy yellowing of vines
- Scorched leaves
- Wilted plants
- Rapid vine collapse on mature plants
- Rind discoloration
- 100% plant death in some fields.

Experimental setup SWFREC 2006-2008

Infected Squash

Decline Everywhere but in the Screenhouses Spring and Fall

Gradient of Symptom Severity Correlated with Distance from Inoculated Squash

Adult Whiteflies on Watermelon

Incidence of Vine Decline on Insecticide Treated and Untreated Plants Fall 2006

*Significant at P < 0.0001

Mean Severity of Vine Decline on Insecticide Treated and Untreated Plants Fall 2006

*Significant at P < 0.0001

Effect of Insecticide Treatment on Spread of SqVYV Decline in Watermelon

Unitracite

Number and weight of fruit per plot of 10 insecticide treated and non-treated plants

*Significant at P< 0.025

Mean Fruit Severity Rating

Conclusions: WVD

- The causative agent for watermelon vine decline in south Florida appears to be exclusively SqVYV transmitted by *B. tabaci*
- Watermelon plants protected by screen from whiteflies did not decline
- Insecticide applications reduced whitefly numbers and vine decline incidence and severity and increased fruit weight
- Future research will focus on the epidemiology of watermelon vine decline and effectiveness of whitefly control as a management practice

SWFREC

Vegetable

Entomology

Barry Kostyk Senior Biological Scientist

Professor of Entomology

Jose Castillo Entomological Scientist Research

Team

Robert Riefer Agricultural Technician